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Abstract. The complex line bundles L ,  over R 3 - { 0 } ,  which are associated with the 
principal SI bundle 7~ : R4- { 0 }  + R3 - {0}, the m being integers, are introduced in order 
to reduce the quantised four-dimensional conformal Kepler problem by the S' action. For 
any m, the reduced quantum system, which is defined on the space of L2 cross sections in 
L,,,, describes the quantised three-dimensional Kepler problem (hydrogen atom) along 
with a centrifugal potential and Dirac's monopole field, which is referred to as the quantised 
MIc-Kepler problem. The numbers -m/2 are equal to the eigenvalues of the angular 
momentum operator corresponding to the SI action, and are also interpreted as the strength 
of the monopole field. The symmetry group of the reduced system, (i) SU(2) x SU(2) 
( m  odd) or ( i i )  SO(4) ( m  even), is unitarily irreducibly represented on each negative-energy 
eigenspace. These representations exhaust all the unitary irreducible representations of 
SU(2) x SU(2) or S0(4) ,  up to equivalence; a pair of integers ( m ,  n )  satisfying the conditions 
that (i) lml -s n, n = 0,  1,.  . . , and (i i )  m and n are simultaneously even or odd designate 
the representations, together with the complex line bundles L,, and the negative eigenvalues 
E , , .  The generators of the symmetry group are shown to be the total angular momentum 
operator and the Runge-Lenz-like operator. The hydrogen atom ( m  = 0) is thus generalised 
to the quantised Mlc-Kepler problem along with the symmetry group. 

1. Introduction 

In a previous paper (Iwai and Uwano 1986), the four-dimensional conformal Kepler 
problem was reduced to the three-dimensional Kepler problem with a centrifugal 
potential and Dirac's monopole field, which is referred to as the Mrc-Kepler problem 
in view of the paper by McIntosh and Cisneros (1970). This dynamical system was 
also treated by Schonfeld (1980) under the name of the 'q-Kepler problem'. A quick 
review of this reduction is as follows. 

dx j ,  
where (x,) are the Cartesian coordinates with r=Z::fxj, and T*R4 denotes the 
cotangent bundle of R4. The standard symplectic 2-form dB is defined on T*R4 by 
dB = Z:I: dp, A dx,, where ( pJ ) are the conjugate momentum variables with respect to 
d s f .  Then the four-dimensional conformal Kepler problem (Iwai 1981) is defined on 
the symplectic manifold ( T*R4, de) ,  together with the Hamiltonian given by 

Let R4 := R4 - (0) be endowed with the conformally flat metric dsf  = 4r 

(k > 0, constant). 
hl,I(L p i ) - -  k 

2 4 r j = ,  r 
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By an SI action on T*R4, the conformal Kepler problem ( Ted4,  d6, H )  is reduced to 
the Hamiltonian system (T*d3, v,, H,). Here, T*k3  is the cotangent bundle of 
R3:= I t3 - {0 }  and U, is the reduced symplectic form expressed as d$’+R,, where 6‘ 
is the canonical 1-form on T*R’ and R, is a 2-form on d’ describing Dirac’s monopole 
field of strength -p. The reduced Hamiltonian H, is written as 

where (Zj) are the Cartesian coordinates in R3 with r2  = Z:+Zi+ 2; and ( F j )  are the 
standard conjugate momentum variables. It should be pointed out that the 2-form R, 
is the outcome of the non-zero angular momentum associated with the S’ action on 
T*R4, and that the appearance of R, is attributed to Kummer (1981). The point of 
this reduction process is that the configuration space k4 is made into a principle fibre 
bundle with structure group S’ZU(1) ;  the free S’  action on R4 gives rise to the 
projection d 4  + R3.  Moreover that action lifts symplectically on T*R4. Note also that 
the SI bundle d4+ R3 is contractible to the Hopf bundle S3  + S2.  

One of the aims of this paper is to construct the quantum system associated with 
the Mlc-Kepler problem ( T*d3, U,, H,). One way to achieve this purpose is to reduce 
the quantised conformal Kepler problem by the S’ action. The resultant system will 
then be considered as the quantum system associated with the MIc-Kepler problep. 
Here, the quantised conformal Kepler problem is defined by a pair ( L 2 ( R 4 ;  4r dx),  H )  
(see Iwai 1982a), where L2(R4;  4r dx)  is the space of square integrable complex-valued 
functions on R4 with respect to the volume element 4r dx = 4r dx, dx2 dx, dx,. The 
fi is the Hamiltonian operator given by 

The quantised conformal Kepler problem was already reduced to the hydrogen atom 
of three dimensions (Iwai 1982a), when the momentum eigenvalue of the SI action is 
zero. The reduction process to be carried out in this paper has a deep relation to the 
work of Greub and Petry (1975) who treated the Hamiltonian operator for the motion 
of a particle in Dirac’s monopole field (see also Ryder 1980, Crampin 1981). In fact, 
complex line bundles over k’ will be introduced to describe the quantised MIC-Kepler 
problem, which carries Dirac’s monopole field. 

The main interest centres on the ‘quantisation’ of the symmetry group SO(4) for 
the classical MIC-Kepler problem of negative energy. The reduction principle is applied 
to the symmetry group for the quantised conformal Kepler problem in order to obtain 
the symmetry group for the quantised Mic-Kepler problem. The connection between 
the four-dimensional harmonic oscillator and the three-dimensional hydrogen atom is 
now widely recognised, and hence the symmetry of the hydrogen atom is discussed 
from this point of view (see Chen and Kibler (1985) and references therein). However, 
those papers discuss the symmetry at Lie algebraic level. The present paper discusses 
it from the Lie group point of view on the basis of the complex line bundles over R’. 
It is shown that all the unitary irreducible representations of SU(2) x SU(2) or SO(4) 
are realised, up to equivalence, in the negative-energy eigenspaces for the quantised 
MIc-Kepler problem. The infinitesimal generators are also given which act on cross 
sections in the complex line bundle over R’. The contents of this paper are outlined 
in the following way. 
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Section 2 is a review in which the quantised conformal Kepler problem is related 
to the harmonic oscillator to get the negative-energy eigenvalues E,, = -2k2/(n +2)*, 
n = o ,  1 ,2  ,... . 

Section 3 presents the reduction of L2(R4; 4r dx)  by the SI action. A geometric 
setting for this reduction process is given by complex line bundles associated with the 
principal U( 1) bundle T :  R4+ R3, which were treated in Greub and Petry (1975) to 
globally describe Dirac's monopole. Fix an arbitrary integer m and consider the unitary 
irreducible representation pm of U( 1) = SI on C ;  z + exp(imt/2)z, z E C. Then, the 
complex line bundle L, = (R4 x ,C, T,, k3), T ,  : R4x ,C+ R3, is associated with the 
U(1) bundle r : R 4 + R 3  (see Greub and Petry 1975, Kobayashi and Nomizu 1963). 
Note that in Iwai and Uwano (1986) U( l )  has the period 47r. The restriction of 
L2(R4;  4r dx)  to the p,-equivariant functions (see Greub and Petry 1975) can be 
identified with the space of square integrable cross sections in L,, denoted by I?,. 
The reduced quantum system will be defined on r,. The restriction to the pm- 
equivariant functions and the introduction of the complex line bundle L, are the 
geometric consequence of the conservation of the angular momentum associated with 
the action of U( 1) = SI, because the p,-equivariant functions are the very eigenfunctions 
of that angular momentum operator. Thus the introduction of L, may be interpreted 
as the reduction process by the SI action. The line bundle L, is known to be endowed 
with a linear connection which arises from the connection defined naturally in the 
U( l )  bundle T :  k4+ R3 (cf Greub and Petry 1975, Kobayashi and Nomizu 1963). Its 
curvature will define a 2-form on k3, which is Dirac's monopole field of quantised 
strength. The linear connection will be used to describe the reduced Hamiltonian 
operator in the next section. Note that when m equals zero, the line bundle Lo is 
trivial and hence To becomes L2(R3) .  This is the case discussed in Iwai (1982a). 
Throughout the following sections, the results for m = 0 give the corresponding results 
of Iwai (1982a). 

Section 4 deals with the reduction of the quantised conformal Kepler problem to 
give the quantised MIC-Kepler problem. Since the Hamiltonian of the quantised 
conformal Kepler problem is invariant under the S' action, the H is reduced to the 
operator fi, acting on (a dense domain in) r m  : 

( - v 1 / 2 ) ~  k 1 3  

2 j = ,  2r2 r 
-- fi, = -- v2+ 

where VI stands for Va,aa,, the covariant derivation with respect to the linear connection. 
The fi, is interpreted as the quantised Hamiltonian operator of the classical reduced 
Hamiltonian H, in the presence of Dirac's monopole field, because, by the comparison 
of (1) and (2), one observes that i, are replaced by -iV, and p is quantised to be 
-m/2. The reduced system (r,,, 2,) will be referred to as the quantised MIc-Kepler 
problem in view of the work of McIntosh and Cisneros (1970). 

In Q 5, the eigenspaces of fi, for negative ejgenvalues are discussed. From the 
definitionAof the reduced Hamiltonian operator H, the eigenvalues of k,,, come from 
those of H. The eigenspaces for fimAof negative energy are shown to be reduced from 
the eigenspaces of (L2(R4;  4r dx),  H )  wi$h negative eigenvalues. 

In § 6 ,  the symmetry group of (r,, H,) is obtained. By making full use of the 
reduction in § 5 and of the results in the papers of Iwai (1982a, b), the group SU(2) x 
SU(2), which leaves the space of p,-equivariant eigenfunctions of invariant, can 
be taken as the symmetry group of the reduced system. To be precise, depending on 
the parity of m, the SU(2) x SU(2) has the unitary irreducible representation in the 
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eigenspaces for &,,, of negative energy; if m is odd, SU(2) x SU(2) is represented, and 
if m is even, SO(4) = SU(2) x SU(2)/Z2 is. The pairs of integers m and n, which assign 
the bundle L, and the eigenvalue E ,  respectively, designate all the unitary irreducible 
representations of SU(2)xSU(2)  or S0(4) ,  up to equivalence, if (i) l m l s  n, n = 
0,1 ,2 , .  . . , and (ii) m and n are simultaneously even or odd. 

In B 7, the generators of the symmetry group of tke quantised MIc-Kepler problem 
(r,,,, fi,) are studied. The reduction method for H in 0 4 is again applicable. The 
generators of SU(2) x SU(2) found in Iwai (1982a) for the conformal Kepler problem 
are used to obtain the generators on r, by the reduction method. Like the classical 
constants of motions for the reduced system (see Iwai and Uwano 1986), these 
generators contain the total angular momentum operator and the Runge-Lenz-like 
operator. 

Section 8 contains concluding remarks. In order to see explicitly how the monopoke 
field arises from the S' action in R4, the conformal Kepler Hamiltonian operator, H, 
is expressed in the curvilinear coordinates in R4 which are related to the Euler angles. 
In addition, Iwai (1987) for the quantum planar three-body problem is briefly referred 
to, which shares the reduction principle with the present paper. Further, a relation to 
the setting for the monopole harmonics is pointed out. The reduction process in B 3 
provides the setting for the monopole harmonics (Dray 1986), if R4 and k3 are 
contracted to S' and S 2 ,  respectively. In fact, the complex line bundle L,  over R3 
then contracts to the complex line bundle over S 2 .  According to Wu and Yang (1976) 
and Dray (1986), the monopole harmonics are defined as the eigen cross sections in 
the complex line bundles over S2 for the operator that are reduced from the standard 
Laplacian on S3. This reduced operator equals, within an additive constant, the Bochner 
Laplacian defined on the complex line bundles over S 2  (Kuwabara 1982). Hence it 
turns out that t,he spherical part of the eigen cross section for the quantised Mlc-Kepler 
HamiltonianAHm gives the monopole harmonics. Local expressions of the eigen cross 
section for H,,, are also given in the spherical coordinates in R3.  

2. A review of the quantised conformal Kepler problem 

We review in this section the quantised conformal Kepler problem defined in Iwai 
(1982a). The quantised conformal Kepler problem is defined as a pair 
(L2(R4; 4r dx),  2). Here, L2(R4; 4r dx)  is the Hilbert space of square integrable 
complex-valued functions on R4 with respect to the inner product 

(f, 8 )  = I,. fb74r dx (3) 

where 7 is the complex conjugate off, r = X j Z j  xf , and dx = dx, . . . dx,. The 2 is the 
Hamiltonian operator given by 

2 is a symmetric operator on C;(R4), the space of smooth functions of compact 
support, with respect to the inner product (3). Note also that C;(R4) is dense in 
L2( R4; 4r dx).  
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The operator f i  is related to the harmonic oscillator Hamiltonian operator d 

( 5 )  
A i 4 a 2  1 

K = -- -+- A2r ( A  > 0, constant). 
2 j=1  ax; 2 

In fact, one has, from (4) and ( 5 ) ,  

4 r ( f i + A 2 / 8 ) = d - 4 k .  (6) 

This relation makes it possible to approach the quantised conformal Kepler problem 
through the harmonic oscillator. Indeed, eigenfunctions of f i  of negative energy can 
be looked upon as eigenfunctions of d. The work of Kibler and Negati (l983,1984a, b) 
is in an analogous line of thought. 

For later use, we here introduce harmonic oscillator annihilation and creation 
operators aJ and U ; ,  respectively, by 

uj = (2A)-”2(A~j+a/d~j )  

U: = (2A)-”’(Axj -d/axj). 
(7) 

The commutation relations among them are 

[a,, a i 1  = a j k  the others vanish. (8) 

The normalised eigenfunctions for the harmonic oscillator are then expressed in the 
form 

+l(X)  = ( 1 ! ) p 2 (  a : ) ‘~ (a : ) ’ 2 (a : ) ’ 3 (a~ ) ’4~O(X)  (90) 

l ! = l l ! 1 2 ! 1 3 ! 1 4 !  (9b) 

where the bold subscript 1 is a multi-index denoting ( 11121314) and I , ,  . . . , 1, are non- 
negative integers. The function &(x) is the normalised ground state &(x) = 
( A / T ) ” ~  exp(-Ar/2). The eigenspace associated with the eigenvalue A ( n  +2) is 
spanned by those functions with 1, + l2  + l3 + I ,  = n. 

This eigenspace can be put into an eigenspace of the quantised conformal Kepler 
problem. Setting 4k = A ( n  + 2), we see from (6) that the corresponding eigenvalues of 
f i  become -A2/8 = -2k2/(n +2)’. Thus we have the following (Iwai 1982a). 

Proposition 2.1. The negative eigenvalues of the quantised conformal Kepler problem 
are E,, := -2k2/( n +2)’, n being non-negative integers, and the corresponding eigen- 
functions are given by (9) with A = 4k/( n + 2) and 1, + l2  + l3 + 1, = n. 

3. Reduction of L2(R4; 4r dx) 

In this section we reduce L2(R4; 4r dx)  by an S I  action (the definition of L2(R4; 4r dx) 
was given in P 2). This is a quantum version of the reduction we performed in Iwai 
and Uwano (1986) for the classical conformal Kepler problem. We recall here that 
the point in the reduction of the conformal Kepler problem is to observe that the 
configuration space R4 = R4 - (0) is a principal U( 1) bundle; 7 : k4+ R3 = R’ - (0). 
This suggests that the reduced quantum system must be defined in a Hilbert space of 
‘wavefunctions’ on R3. To be precise, wavefunctions should be generalised to 
‘wavesections’ in a complex line bundle over R’. 



4088 T Iwai and Y Uwano 

We start by reviewing the principal U( 1) bundle T :  R 4 +  R3. Let 0, be an SI action 
on R4 defined by a 4 x 4 matrix T( t ) :  

@.,x = T( t ) x  XER4 t E [ 0 , 4 ~ ]  (loa) 

and 

cos t /2 -sin t / 2  
sin t / 2  cos t /2 

T(  t )  = R ( t ) =  

Here and henceforce missing matrix entries are all zero. Then the U ( l )  bundle is 
defined as a natural projection T : R 4 +  R"/S' = R3, In an explicit manner, the T is 
given by 

21 = 2(x,x3 + x2x4) 

2, = 2(-x,x,+x2xJ (11) 

z3 = x:+x,-x3 -xq 2 2 2  

where ( . f J )  are the Cartesian coordinates in k3. We note here that if R4 is restricted 
onto the unit sphere S3 the mapping T becomes the Hopf fibring S3+ S2 (cf Ryder 
1980), which is easily seen from 

The can be lifted to act symplectically on the cotangent bundle T*R4. By using 
the momentum mapping associated with the lifted SI action, the reduction of the 
conformal Kepler problem was carried out (Iwai and Uwano 1986). We have here to 
consider a quantum analogue to that reduction. In quantum mechanics, the momentum 
operator associated with is defined by 

I d  
1 d t  

f i f = ~  --f( T(-t)x) 

A calculation gives 

fi = ti(-x,a/ax, + x,a/ax, - x4a/ax3 + x3a/ax4). (12b) 

We denote the self-adjoint extension of fi on a certain domain in L2(R4; 4r dx)  by 
the same letter. 

To fix a momentum eigenvalue of fi !hen amounts to a restriction of the Hilbert 
space L2(R4;  4r dx)  to an eigenspace of N. This procedure corresponds to fixing the 
?omentum value in the classical case. However, instead of considering the operator 
N, we treat the unitary operator U, on L2(R4; 4r dx)  defined through 

( U , f ) ( x )  =f (T(- t )x) .  (13) 

We notice here that the infinitesimal generator of U, is, of course, ifi,  and that the 
volume element 4r dx is invariant under 0,. Then, by using ;he U,, we can say what 
subspace of L2(R4; 4r dx)  is replaced for the eigenspace of N. 

To start with, we introduce complex line bundles. Let p m  denote a unitary irreducible 
representation of U ( l )  (or @,) on C defined by 

p,,,(@,): z-, exp(imt/2)z (14) 
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where m is an arbitrary integer and t ranges from 0 to 47r. Let U( l )  act on R4x C to 
the left in the form 

(x, z )  + ( T (  t)x, exp(imt/2)z) XER4 Z E  c. (15) 
Then the quotient manifold denoted by d4  x ,C is made into a complex line bundle 
L, = (k4 x ,C, T,, k3) ,  where T ,  is the projection, T, : R" x ,C + R'. The L, is called 
the complex line bundle associated with the U( 1)  bundle 7r : k4 + d'. Denoting by q 
the natural projection R4 x C + R4 x mC, one has the commutative diagram 

where p1 is the projection onto the first factor. We note here that we are treating the 
left action of U(1), contrary to the usual definition of the associated bundle (Greub 
and Petry 1975). 

A complex-valued function f is called pm equivariant if it satisfies 

f( T(t )x)  = exp(imt/2)f(x). (17) 
It is well known that p,-equivariant functions on R4 are in one-to-one correspondence 
with cross sections in L, (Greub and Petry 1975, Kobayashi and Nomizu 1963). We 
denote by qm the correspondence; for a p,-equivariant functionf and the corresponding 
cross section y in L, we have qmf= y. Further, for a (smooth) p,-equivariant function 
f, we obtain, by differentiating (17) with respect to t, 

fif= - ( m / 2 ) ~  (18) 
Thus f turns out to be an eigenfunction of fi which corresponds uniquely to a cross 
section in L,. Accordingly, the introduction of L, is understood as a geometric 
consequence of the conservation of the angular momentum associated with the U( 1) 
action (10). 

Let the y be cross sections in L,  such that qmly are in L2(R4; 4r dx). Then qm'y 
are pm equivariant, so that the inner product in L2(R4; 4r dx)  gives rise to the inner 
product in the space of such cross sections: 

where the bar indicates the complex conjugate. We note here that the integral is 
invariant under the U(1) action. Thus the space of the p,-equivariant functions in 
L2(R4; 4r dx)  is associated with the Hilbert space, denoted by r,, of square integrable 
cross sections in L,. In other words, L2(R4; 4r dx)  is reduced to r m  by restricting 
L2(R4; 4r dx)  to the functions satisfying U, f=  exp(-imt/2)J This finishes the 
reduction. 

We recall here that the classical reduced system of the conformal Kepler problem 
has Dirac's monopole field (Iwai and Uwano 1986), so that the reduced quantum 
system to be defined on r, must carry Dirac's monopole field. This requirement, 
however, can be fulfilled by introducing a linear connection on the complex line 
bundle L,. 

In what follows we study the linear connection on L, which is induced from a 
connection on the principal fibre bundle 7r: R4+ R3. The S' action @, generates a 
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vector field N on R4; N = - i k  At every point x of R4, a horizontal subspace V, of 
Tx(k4) is defined as the set of all tangent vectors orthogonal to N, with respect to the 
standard inner product on R4 or with respect to the conformally flat metric d s f .  It is 
easy to verify that the assignment of V, to every x E R4 is a connection on R4 (Greub 
and Petry 1975). To every vector field X on R3 there is a unique horizontal vector 
field X *  on R4 satisfying 

.rr*x; = X?r(X) XER4 (20) 

where .rr* is the tangent map of T. The X *  is called the horizontal lift of X .  

1975) 
Using qm, we can define a linear connection V on L,  by setting (Greub and Petry 

V x Y =  q m ( X * 4 h )  (21) 

for a cross section y in L, and a vector field X on k3. By definition, the curvature 
R of the connection V is given by 

R ( X ,  Y ) Y  = ( [ V x ,  VUl-V[x,Y,)Y* 

R ( X ,  Y ) Y  = qmE([X*, Y*l-  [X, Y l * ) q i ’ ~ I .  

(22) 

(23) 

Combined with (21), the definition (22) is put into the form 

Using (23), we can write out the curvature R. We note that the horizontal lifts of 
a/aZj, j = 1,2,3,  are given by 

Calculation then yields 

[(a/dx”,)*, (a/&)*] = (Z3/r3)N (cyclic). 

From (23) and (25) it follows that 

R(d/aZ, ,  d/aZ,) = (im/2)(Z3/r3) (cyclic) (26) 

where we have used the fact that qmly is a p,-equivariant function. Equation (26) is 
written in the form 

R ( X ,  Y ) y  = -i(-m/2)SZ(X, Y ) y  (27) 

where X and Y are vector fields on R3, and 

SZ = r-3(  2, dZ2 A dx’, + 2, dg3 A dx‘, + 2, dx’, A d&) r 2 = x x ’ : .  (28) 

This shows that the curvature R defines Dirac’s monopole field of strength -m/2. 
Thus we have taken Dirac’s monopole field into L,. 

The above discussion is summed up in the following theorem. 

Theorem 3.1. By an S’ action, the Hilbert space L2(R4; 4r dx)  is reduced to the Hilbert 
space r,, m being an integer, of square integrable cross sections in the complex line 
bundles L, over R 3 .  The L, is endowed with the linear connection whose curvature 
gives Dirac’s monopole field of strength -m/2. If m = 0, the L, becomes a trivial 
bundle R3 x C, and Dirac’s monopole field vanishes. 
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In quantum mechanics, magnetic fields should appear through vector potentials. To 
check this, we investigate the connection V in terms of the coordinates (2,). Consider 
a locally defined p,-equivariant function 

,y+(x) = [ (xi  + ~ x ~ ) ( x ~ + x : ) - " ~ ] " .  (29) 

U+ = {2 E k3 without negative i3 axis}. (30) 

This defines a local cross section qmX+ = y+ in L, which is defined in 

Then any local cross section defined on U+ can be expressed as f ' y + ,  where f '  is a 
complex-valued function on U+. 

For the local cross section y+ ,  we can calculate the covariant derivative O x y + ,  
using (21). Denoting by V, the covariant derivation Va,a;,, we obtain, after calculation, 

v 3  y+ = 0. 

Let A+ be a vector field on U+ defined by 

which is a locally defined vector potential used in McIntosh and Cisneros (1970). Then 
(31) is expressed as 

V j y +  = -i(-m/2)A: y+ j = 1,2,3.  (33) 
The covariant derivative off '  y+ then turns out to be 

V , ( f + Y + )  = [dff/d2, -i(-m/2)A:f+lY' (34) 
which is often used in the literature in treating Dirac's monopole field in quantum 
mechanics. 

If we take another local p,-equivariant function 

x-( x)  = [ (x3 + ix,)(x: + x:)-"~]"' (35) 
we will obtain a local expression of Vi different from (34) but we do not go into detail. 
Another local expression in curvilinear coordinates will be given in 0 8. 

4. Reduction of the quantised conformal Kepler problem 

In this section we wish to study what Hamiltonian operator should be derived in the 
reduced Hilbert space r, from the Hamiltonian operator (4). For this purpose, we 
start with a one-parameter group of unitary operators U, defined by (13). The operators 
(x,) and (a/axJ) are then subject to the transformations 

U,XU;'= T(-t)x (36) 

u , (a /ax)u ; '=  T(-t)a/ax (37) 
respectively, where x and d/dx are column vectors. We here restrict domains of xJ and 
a/axj, fi and so on, say, to Cy(R4), the space of smooth functions of compact support. 
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Using (36)Aand (37) ,  we can prove that the Hamiltonian operator fi is invariant 
under U,;  U,HU; '=f i .  In fact, fi is composed of Xa2/ax: and Ex: which are 
invariant under U,. 

To reduce fi, we have only to restrict the domain of fi to p,-equivariant functions. 
For a pm-equivariant function f ,  we can define a reduced operator fi, by 

f i m  ( q m f )  = q m  ($1. (38) 

In fact, f i f  is p, equivariant, i.e. U,fif  = exp(-imt/2)fijT because of U,fiU;'  = fi and 
U,f = exp(-imt/2)J: 

In what follows we describe fin, in an explicit manner. In terms of the horizontal 
lifts (a/a2,)* given in (24) and the momentum operator fi given in (12b), the 
Hamiltonian operator fi is expressed as 

fi=-' 2 1=1 [ ( 6 ) * l 2 + ( l / 2 r 2 ) f i 2 - ( k / r ) .  (39) 

An analogous relation to this is found in Kibler and Negadi (1983). We operate a 
pm-equivariant function f with fi, and f i f  with q,,,, to get 

where y = qmJ: We have here used (18) and (21). A comparison of (40) with (1) shows 
that the fi,,, is a quantisation of H, by replacing i, and /1. with -iVj and -m/2, 
respectively. Thus we obtain the following theorem. 

Theorem 4.1. The quantised conformal Kepler problem ( L 2 ( R 4 ;  4r dx),  6) is reduced 
to the quantum system (r,,,, f i m ) ,  where r,M is the Hilbert space in theorem 3.1, and 
fi, is given by (40). We refer to ( rm,  f i m )  as the quantised Mic-Kepler problem. If 
m =0,  the reduced system becomes the hydrogen atom ( L 2 ( R 3 ) ,  fro) (Iwai 1982a). 

In conclusion, we give local expression to fi,. Let f+y+ be a local cross section as 
in 5 3. Then (40) turns out to be 

This shows that the fi, is indeed the Hamiltonian for a particle moving in the presence 
of Dirac's monopole field of strength -m/2, a centrifugal potential ( m/2)2/2r2 and a 
Newtonian potential - k /  r. 

5. Negative-energy eigenspaces of (r, , fi,,,) 
The negative-enzrgy eigenfunctions for (r,, fi,) can be obtained from those for 
( L 2 ( R 4 ,  4r dx),  H )  by the reduction. To carry out this is the purpose of this section. 
It is convenient to introduce the creation and annihilation operators b: and bj, 
j = 1,2,3,4,  by 

b:= ( a l - i a i ) / &  bi=(a:-ia:)/& 

b: = (a:+ia:)/& b l  = (a:  + i a l ) / f i  
(42) 
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together with the adjoint relations. It is easy to check that 

L6,, bll = g k  the others vanish. (43) 
Then, in terms of b:, one can define another set of the harmonic oscillator 
eigenfunctions (cf (9)) 

?Pk(x)  = ( k ! ) - ” ’ (  b:) k l (  6 ; )  k ~ (  b l )  k 3 (  b l )  k 4 + O ( ~ )  

k ! := k ,  ! k2!  k3 ! k,! . 
(44) 

As in (9), the bold subscript k is a multi-index denoting (k,k,k,k,), where k , ,  . . . , k,  
are non-negative integers. 

The eigenspace, denoted by S ( E , ) ,  of negative energy E, = -2k2/(n+2)’ for 
the conformal Kepler problem is then spanned by (44) with A =4k/(n  + 2 )  and 
k ,  + k,+ k3 + k, = n (see proposition 2.1). 

The introduction of the operators 6, and b: makes it easy to pick out the pm- 
equivariant functions from these eigenfunctions. We note indeed that the unitary 
operator U, induces the transformations of b: in the form 

where b+ is a column vector of ( b l )  and the missing matrix entries are all zero, Z2 
being the 2 x 2 identity matrix. From (45) and the fact that $q,(x) is U, invariant, the 
eigenfunctions (44) are subject to the transformation 

(46) ( u , ? P k ) ( x )  = exp[i(k, + k2-  k,  - k4) t /2]?Pk(x) .  
Thus the U, is diagonalised with respect to (44). Therefore, it turns out that 
eigenfunctions ? P k ( x )  of energy E, are p,,, equivariant if and only if the multi-index 
k satisfies 

k,+ k,+ k,+ k4= n 

-k ,  - k,+ k,  + k4 = m. 
(47a) 

(47b) 
Thus one has 

k , + k 2 = ( n - m ) / 2  k, + k,  = ( n  + m)/2 .  

Since k, are non-negative integers, m and n must satisfy 

lml s n (49a) 

m and n are simultaneously even or odd. (49 6) 

and, moreover, 

These conditions were pointed out in McIntosh and Cisneros (1970) by solving the 
Schrodinger equation H m y  = E y  in local coordinates. By S ( E ,  ; m )  we denote the 
subspace of S(E , )  consisting of p,-equivariant eigenfunctions of energy E,,. Then the 
dimension of S ( E , ;  m )  is determined by (48): 

dim S( E, ; m )  = ( n  - m + 2 ) ( n  + m +2)/4.  (50)  
We are now in a positionjo describe eigenspaces of negative energy for the quantised 

Mrc-Kepler problem (r,,, H,,,). Letf be in S ( E , ;  m ) .  Then fif= E,$ Applying (38) 
to this, we have 

f i m ( 4 m f )  = En(qm f). ( 5 1 )  
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This means that the cross sectio? qmf  in L, is an  eigen cross section of fi,. Conversely, 
if y is an  eigen cross section of H,, the p,-equivarifnt function q;'-y is an  eigenfunction 
of H. Therefore, all the negative eigenvalues of H ,  are given by E,, subject to (49), 
and  the eigenspaces are given by q,S(E, ; m). In summary, we have the following. 

Theorem 5.1. The p,-equivariant eigensubspace S( E, ; m) for the quantised conformal 
Kepler problem is in one-to-one correspondence with the eigenspace q,S(E,; m] of 
negative energy E, = -2k2/(n + 2 ) 2  for the quantised MIC-Kepler problem (r,, H,), 
where n and  m are subject to the conditions (49). The qmS(E,  ; m) is of dimension 
(n - m +2)(n + m +2)/4. 

A 

6. The symmetry group for (r, , H,) of negative energy 

This section S ~ O W S  that the eigenspace q,S(E,; m) of the quantised MIc-Kepler 
problem (r,, H,) admits a group action which accounts for the degeneracy of the 
energy level E,. 

According to Iwai (1982b), SU(4) acts on L2(R4)  unitarily as follows. Let U, be 
a unitary operator corresponding to a matrix C in SU(4). The action of U, on the 
complete basis q k  of L2(R4)  is then given by 

(52) 

where b' is a column vector of b: and ( C T b + ) ,  denotes the j t h  component of the 
vector CTb+, the superscript T meaning the transpose. Note that the U, induces the 
transformation of b' 

T + k  U C q k ( X ) = ( k ! ) - ' " ( C T b i ) ~ ' .  . . ( c  b )44$0(X) 

Ucb U,' = CTbf. (53) 

We mention here that the operator (52) covers the unitary operator U, defined by (13), 
if C is replaced by T ' ( - t )  given in (45). 

Restricted to the eigenspace for the harmonic oscillator ( k ,  + k2 + k3 + k, = n), (52) 
gives a unitary irreducible representation of SU(4), because each eigenspace is identified 
with the vector space of homogeneous polynomials of degree n. If we set A = 4k/( n + 2) 
in (7) and  therefore in (42), this representation gives rise to an  action of SU(4) on the 
negative-energy eigenspace S( E,) of the quantised conformal Kepler problem of 
eigenvalue E,. We denote this action by U$". By carrying out a straightforward 
calculation the U',) can be shown to be unitary in S ( E , )  with respect to the inner 
product (3) .  The proof of this unitarity is presented in the appendix. 

We now wish to know what subgroup of SU(4) acts on S (  E, ; m), the subspace of 
S( E,,) consisting of p,,-equivariant eigenfunctions of negative eigenvalue E,. To this 
end, we show the following lemma. 

Lemma 6.1. S ( E , ;  m) is a n  invariant subspace for U$" if and only if U',) and U, 
commute. 

Proof: By Tpm) ,  we denote q k ( X )  that is in S ( E , ;  m), from now on, when we want 
to emphasise that T k  is in S ( E ,  ; m). If U?' acts on S ( E ,  ; m), U:")9\I/(kn*m) must be 
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pm equivariant for any Yr."'. Thus we have 

U,( U(c"'qY3"') = exp(-imt/2)( Uy)qp ,m' )  

= ~'c"'[exp(-imt/"~'',")] 

= U',"'( ufqpm)). (54) 
The converse can be proved in an analogous manner. This ends the proof. 

Suppose U',"'actsonS(E,; m),andlet  qm9F3" ' ) , forTp" 'E  S ( E , ;  m ) .  Then, 
by virtue of theorem 5.1 ,  we can define an action U',"9m', from U',.', on the eigenspace 
q m S ( E , ;  m )  of the quantised MIc-Kepler problem by 

(55)  
Thus a subgroup of SU(4) acting on S ( E ,  ; m )  becomes a symmetry group acting on 
qmS(E, ; m ) ,  the eigenspace for &. 

Consequently, from lemma 6.1, in order to obtain the symmetry group, we have 
only to find matrices C which commute with T'( t ) .  We notice again that when restricted 
on S( E, ; m )  the U, is expressed in the form Uy,( ) - f ) .  Now a straightforward calculation 
shows that the matrices commuting with T'( t )  take the form 

U p m )  y(kn,m) .- n )  - 1  ( n , m )  
'- q m u ( c  q m  Y k  . 

where C,  , C, E U(2) with det C,  det C, = 1, and the missing matrix entries are all zero. 
Hence, the subgroup commuting with T ' ( t )  becomes S(U(2) x U(2)), where S means 
'unimodular'. This result is the same as in the classical system (Iwai and Uwano 1986). 
We wish to treat U ( l )  x SU(2) x SU(2), a double covering group of S(U(2) x U(2)),  
rather than S(U(2) x U(2)) itself. The projection of U ( l )  x SU(2) x SU(2) to S(U(2) x 
U(2)) is given by 

c = T ' ( t ) (  cl c;) = ( cl c2) (57) 

where T'( t )  E U( 1 )  and Cl,, Ci E SU(2). Since U( 1 )  is represented as a scalar multiplica- 
tion by exp(-imt/2) on S ( E ,  ; m ) ,  we consider instead the action of SU(2) x SU(2) 
on S ( E ,  ; m )  in detail. 

Then from (52) and (57) we see that the SU(2) x SU(2) action is isomorphic with 
a tensor product of irreducible representations of SU(2). To stress this point of view, 
it is helpful to denote b: ,  b : ,  b:, and b l  by A:,  A: ,  B: and B:, respectively. Then, 
the basis functions YP"' in S ( E , ;  m )  are expressed as 

( k ! ) - " 2 ( A : ) k l ( A : ) k ~ (  B : ) k 3 ( B l ) k 4 + o ( ~ )  (58) q ' . r n '  = 

where the multi-index k is subject to (48). From the condition (48), one sees that 
S ( E , ;  m )  can be identified with the tensor product of the space of homogeneous 
polynomials in (A:) of degree ( n  - m)/2 and the one of homogeneous polynomials 
in (Bf ) of degree ( n  + m)/2. Then the S ( E ,  ; m )  carries a unitary representation of 
SU(2) x SU(2); from (52), (57)  and ( 5 8 ) ,  one has 

( k ! ) - I l 2 (  cf~+):q ~ T A + ) : ~ ( C : B + ) ' ; , ( C : B + ) : ~ ~ ~ ( X )  (59a) 
with 

c = ( cl c,) E SU(2) x SU(2) Cl, c, E SU(2). (596) 
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Here, A+ and B+ are column vectors of AT and B: , j  = 1,2,  respectively. ( C:Af), 
and (C:B+), denote the j t h  component of the vectors C:Af and C:B+, respectively, 
the superscript T meaning the transpose. Since the factor groups SU(2) of SU(2)x  
SU(2) are both represented irreducibly in ( n  - m)/2-degree (respectively ( n  + 
m)/2-degree) homogeneous polynomial space of A' (respectively B+) ,  the representa- 
tion (59) becomes a unitary irreducible representation of SU(2) x SU(2). It should be 
noted that the representation (59) exhausts all the unitary irreducible representations 
(cf Wigner 1959). These representations give rise to unitary actions of SU(2) x SU(2), 
U',".", on qmS(En;  m )  through (55) together with (59b). Thus we have realised all 
the unitary irreducible representations, up to the equivalence, in qmS(En ; m ) ,  every 
eigenspace for the Hamiltonian operator fi, acting on the complex line bundle L,. 

We proceed further to discuss the symmetry group SU(2) x SU(2). Recalling that 
the integers n and m are subject to the condition (49b), we break up our discussion 
into two: n and m are simultaneously (i) even and (ii) odd. We now note that for 
( - I 2 ,  -Z2) of SU(2) x SU(2) one has 

(60) Uj2,z,-,2)ypm) n m )  = ( - l ) " y p m ) .  

This implies that, according to whether n is even or odd, the right-hand side of (60) 
is equal to or to -y(kn."'). Thus in case of (i) we should understand that 
SU(2) x SU(2)/Z2== SQ(4) is represented irreducibly in qmS(E, ; m ) ,  where Z2 consists 
of ( I 2 ,  Z2) and (-Z2, -Z2). In the case of (ii), SU(2) x SU(2) is represented irreducibly, 
of course. We turn our attention to the condition (49a), especially to the case Iml= n. 
Then, (48) gives, if m is positive, 

k ,  + k,  = 0 k,+k,= m. (61 1 
Therefore, one has k ,  = k2 = 0. From this and (59a) it follows that the action of the 
first factor of SU(2) x SU(2) becomes trivial, so that the action of the second factor is 
significant. The same discussion can run through, if m is negative, to result in showing 
the first factor is significant. Further, if m is even, (60) also shows that -Z2 of SU(2) 
fixes all the elements of (61), so that SU(2)/Z2= SQ(3) is considered as represented 
unitarily irreducibly on S(EI,, ; m ) ,  where Z2 = { I 2 ,  -Z2}. If m is odd, SU(2) is represen- 
ted unitarily irreducibly. 

Summing up the above, we have the following. 

Theorem 6.2. Under conditions (49), the negative-energy eigenspace qmS(E, ; m )  of 
the quantised Mlc-Kepler problem (r,, fi,) admits the unitary irreducible representa- 
tions of the symmetry group 

(i) SO(4) if m is even 

(ii) SU(2) x SU(2) if m is odd. 

All the unitary irreducible representations of SU(2) x SU(2) are thus realised as the 
symmetry group acting on qmS(En ; m ) ,  up to equivalence. In particular, in the case 
when n = Im(, the symmetry group is better considered as 

( i )  SQ(3) if m is even 

(ii) SU(2) if m is odd. 
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7. Generators of the symmetry group 

In this section we construct the generators of the symmetry group found in 0 6 .  The 
reduction method used in 0 4 is also applicable in this section. 

We recall that the Hayiltonian fi of the quantised conformal Kepler problem was 
reduced to the operator H ,  because of the invariance U,fiU;'  = fi. The reduction is 
valid for other U( 1)-invariant operators. 

Lemma 7.1. Let fi be an operator defined in L2(R4; 4r dx). Then fi can be reduced 
to an operator defined in r m  for any m, if and only if F is U( l )  invariant: 

u,Pu;' = i: (62) 

Proof: We restrict the domain of fi to, say, Cy(R4). Let fi be U( l )  invariant. Then 
for p,-equivariant functions f, one can define a reduced operator fim through 

F m  ( q m f )  = q m  ( $1 

u,F~.= Fuff= exp(-imt/2)Fj: (64) 

(63) 

because Ff is also pm equivariant; 

Conversely, if F is reduced to fi,, satisfying (63), then Ff Fust  be pm equivariant, so 
that U,@= exp(-imt/2)fif= fiU,f: Thus, one finds that F is U( l )  invariant on the 
space of p,-equivariant functions. We now wish to show that 1;. is also U( 1) invariant 
on C ~ ( R ~ ) .  

Let f be any function in Cr(R4). Then the function fm defined by 
477 ~ , ( x ) = ~ I  f(T( r )x )  exp(-imt/2) df 

4.n 0 

is pm equivariant, because 

f (T(f )T(s )x)  exp(-imt/2) d t  

=L / 0 4 r f ( T ( s +  t)x) exp[-im(s+ t)/2] exp(ims/2) d ( s+  t )  
4.n 

= exp(ims/2)fm(x). 

Since fm(x)  are Fourier coefficients, f (  T (  t)x) is expanded into 

From this it follows that any function is expanded as a sum of p,-equivariant functions, 
where m varies over all the integers. Accordingly, fi becomes U( l )  invariant on 
C ? ( R ~ ) ,  as a consequence of its U( I )  invariance on any space of p,-equivariant 
functions. This completes the proof. 

What we have to do now is to find U( 1)-invariant operators which generate the symmetry 
subgroup SU(2) x SU(2) for the quantised conformal Kepler problem. Incidentally, a 
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method for obtaining such generators is given in Iwai (1982a), according to which the 
following is a basis of U( 1)-invariant operators which generate SU(2) x SU(2): 

a 
x2 -+ x4 -- x3 - 

ax, ax, ax, 

&-- ( - a2  +q -2(x,x3+x2x4)l-i 

D2 A = - - 1 (- a2 - -) d2 

a 2  a2 ”’) 

4 ax, ax3 ax,ax, 

4 ax2ax3 ax, ax, 
-2(x2x3-x,x,)Ei 

- ( x 2 + x 2 - x 2 - x 2 ) f i  1 2 3 4 ax: ax: ax: 

where f i  is the Hamiltonian operator of the quantised conformal Kepler problem. 
These are symmetric operators on C2(R4) with r!spect to the inner product (3) (see 
Iwai 1982a). The commutation relations among J and fi are given by 

[J, j k l  = iE ,khjh  [ d,, f i k  ] = i E , k h j h  ( -2A) [ J ,  8k1  = i&,khfi)h (69) 

where &]kh are Edington’s epsilon and j ,  k and h range over 1,2, 3. We are now in a 
final stage to get the symmetry operators. As we have done in (39) for k, we express 
the operators (68) in terms of (d /a2 , ) *  and fi. A calculation results in 

Jl=:[.(&)*-23(&)*]+3fi A 1  
1 r 

a23 r 

Operating p,-equivariant functions with (70) and applying (21), we obtain the reduced 
operators 

E j 1 1 ,  = ( l / i ) (2*V3- ;3v2)+[(m/2) / r l~ ,  

j 2 1  m ( 1 / i ) ( 23v I - 21 V 3 ) + [ ( m / 2 / r122 
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[ j 3 1 m  = ( l / i ) ( x ' , ~ , - x ' , ~ , ) + [ ( m / 2 ) / r l x ' ,  

[ f i i  3 m = ( 1 / 2i) ( [ j z l  m V 3 - [?,I m 0 z - v d j 3  1 m + V 3[ j 2 1  m ) + k ( 2, / r 

[ f i > l m  = ( 1 / 2 i ) ( [ j 3 l m V , - [ j i I m ~ ~ - V . l [ j i l m  +V1[jXlm)+ k ( Z z / r )  

[ f i , ~ m  = (1/2i)([jll,nv2-[j21m~I - ~ l [ j z ~ m  + v 2 [ j l l m )  + k ( 2 3 / r ) .  

(71) 

In conclusion we make a mention of quantisation. In Iwai and Uwano (1986), 
constants of motion for the reduced classical system are defined on the cotangent 
bundle of d3.  If we make it a quantisation rule to replace j" by -iVj, we can obtain 
(71) from the classical constants of motion. If m = 0, the operators (71) reduce to the 
angular momentum and Runge-Lenz vector for the hydrogen atom. The operators 
(71) were given in McIntosh and Cisneros (1970) in terms of vector potential. Our 
result is, however, expressed in the large. Note also that the angular momentum 
operators [.?Im are treated in Wu and Yang (1976) for discussing the monopole 
harmonics. 

This section is summed up in the following. 

Theorem 7.2. The U( 1)-invariant operators (68) which generate the symmetry subgroup 
SU(2) x SU(2) forthe quantised conformal Kepler problem are reduced to the symmetry 
operators (71) for the quantised MIc-Kepler problem (rm, &). The [.?Im are the total 
angular momentum and the [ fi],,, the Runge-Lenz-like vector. 

8. Concluding remarks 

To understand in a conceptual manner how the monopole field arises in the reduced 
system, we have to express the reduction of the Hamiltonian operator in terms of 
curvilinear coordinates which are related to the Euler angles. Let us define the 
curvilinear coordinates in R4 by 

x1 =&cos(6/2) cos[($++)/2] x2=&cos(6/2)  sin[(IC,+q5)/2] 

x3 = & sin( 6 / 2 )  cos[ ( IC, - 4)/2]  x4 = fi sin ( 6 / 2 )  sin[ ( IC, - +)/2] 

where r = XjZ: xi' and the variables ( 6 ,  +, 4 )  range over 0 G 6 s 77, 0 G ( IC, + 4 ) / 2  s 277 
and -77 s ( IC ,  - + ) / 2  G T, respectively. 

(72) 

Then the quantised conformal Kepler Hamiltonian operator is written as 

and the angular momentum operator as 

rir = ia/a+. (73b) 

Let us recall the discussion on the derivation of the vector potentials for the 
monopole field (equations (29)-(35)). One easily verifies, from (29) and (30) and 
definition (72), that the p,-equivariant function ,y+(x) given in (29) is equal to 
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exp[im(++ 4)/2], so that the p,-equivariant function f ( x )  on R4 which corresponds 
to an arbitrary local cross section f’( r, 8, 6 ) y +  in L,  can be written as 

f ( x )  = f ( c  8 , A  4 )  =f+( r ,  076) exp[im(+ + 41/21 (74) 
on T-’( U+) ={(I, 8, 4, +); 8 # T } .  Operating this f ( x )  with the Hamiltonian fi, we 
have 

(am, 894,  +) = f i ( f +  exp[im(++ 6)/21) 

d e  ” )  l l d  1 a’ 
= { - I [  7 ( r 2  :) +T ($+cot e- 

)‘] 

Thus, from (38), we have 

+- 1 
(76) 

which gives a local expression to the Hamiltonian operator fim for the quantised 
MIC-Kepler problem on U+. Compare (76) with (41). 

The local expression (76) of the reduced Hamiltonian shows that the reduced 
system is coupled with the magnetic field i( m/2)R = i(m/2) sin 8 d 8  A d 4  whose vector 
potential on U+ is i(m/2)(1 -cos e )  d4.  Recall that any equivariant function is an 
eigenfunction of fi (see (18)). Then, we observe that the angular momentum possessed 
by the original system exerts an influence on the reduced system through the magnetic 
field i( m/2)R. The centrifugal potential ( m/2)’/2r2 is another influence. 

Note that the derivation of (76) is valid only on U+ because of singularities of the 
vector potential for the monopole field. This is the reason why we introduce the 
complex line bundles L, in order to analyse globally the quantised MIc-Kepler 
problem. 

We here refer to the work of Iwai (1987) on the reduction of the quantum planar 
three-body problem by an S’  action, in which one can understand clearly the appearance 
of the monopole field induced by the rotation. According to Iwai (1987), the centre-of- 
mass system is made into a principal SO(2) bundle R 4 + R 3  and the SO(2) action is 
given as the rotation around the centre of mass for the three bodies. As in our case, 
the resultant quantum-reduced system carries the monopole field and the centrifugal 
potential. In his case, the monopole field can be interpreted as the Coriolis field 
induced by the rotation. 

We point out, in addition, that the monopole field or a monopole-like field can be 
found in the literature concerning the SO(2) reduction for classical Hamiltonian systems 
(Satzer 1977, Kummer 1981, Marsden 1981). For instance, the planar n-harmonic 
oscillator system is reduced, by an SO(2) action, to the system having the monopole-like 
field and the centrifugal potential, which was pointed out by Weinstein (Marsden 
1981). The monopole-like field is also understood as the ‘magnetic’ field induced by 
the rotation. 
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To close this section, we mention a relation between monopole harmonics (Wu 
and Yang 1976) and the eigensections for the quantised Mrc-Kepler problem. To do 
this, we express the quantised conformal Kepler problem in the form 

where A3 is the standard Laplacian on the unit sphere S3 c R4. If we follow the 
procedure (14)-(16) with S3 and S2  in place of R4 and d3, respectively, we have the 
complex line bundle S3  x mC+ S2.  Further, in the same manner as (38), the Laplacian 
A, on S3 is reduced to the operator A:” - m 2  acting on cross sections in S3  x ,C (see 
Kuwabara (1982) with different notation). Here Aim) is called the Bochner Laplacian. 
According to Wu and Yang (1976) and Dray (1986), monopole harmonics are defined 
as eigen cross sections for Aim) - m2 in the complex line bundle S3 x ,C. We would 
instead like to define monopole harmonics as eigen cross sections for A i m ) .  Since the 
eigenvalues of A3 are -4J(J+1) with J non-negative half integers, one has for the 
monopole harmonics U, 

Aim)u = -[4J(J+ 1 )  - m 2 ] u  

with J = /m1/2, lml/2+ 1 ,  Im1/2+2,. . . . Using Aim) ,  we can express the quantised 
MIc-Kepler Hamiltonian fim in the form 

In view of this, we can take an ansatz R ( r ) u  as an eigen cross section for fim, where 
U is the monopole harmonics. 

We turn to a local expression of the eigen cross section for fim. To this end, we 
first give a local expression to the eigenfunctions of the quantised conformal Kepler 
problem of eigenvalue E, in terms of the curvilinear coordinates ( r ,  8, 4, 4 )  in (72). 
Using the expression (73a),  we obtain, after calculation, the eigenfunctions (not 
normalised) for fi of eigenvalue E ,  = -2k’/( n + 2)’ (with n a non-negative integer) 

with 

(Y =IK -MI P=IK+MI  

Here, J, K,  and M are half-integers subject to 

0 s (n/2) - J E Z OGJ-IKI J - I M I E Z  (79c) 

with 2 denoting the set of all integers. The functions LyA:,,2 and P p s p )  are, respec- 
tively, the associated Laguerre polynomial and the Jacobi polynomial (for definition, 
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see Erdelyi et a1 (1953)). The expression (79) is related to that obtained for the 
harmonic oscillator (Ikeda and Miyachi 1970) through (6). The Fc,$ become pm 
equivariant iff M = m/2, since one has, by calculation, 

U,F‘”.J) 
K , M ( r ,  0, 4, 9 )  = Fc;;Cr, 4 4, 9 - t )  

( t  E LO, 4 4 .  (80) ,-i ‘ M r F ( n , J )  
K,M(rr  0, 4, 9 )  - - 

Thus from (74) we have a local expression of the eigen cross section for f i m  as 

f + ( r ,  e, 4 )  = R y ( r )  exp[i(K - ~ / ~ ) ~ ] P ‘ , ” , ~ ’ ( C O S  e)  

(Y = J K  - m/21 P = IK + m/2/ and ? = J - ’ ( Y  2(  + P ) .  
with 

The spherical part of this f’ gives a local expression of the monopole harmonics. 
It should be pointed out that the spherical part Q:,M of FF$, which is an 

eigenfunction for A,,  gives nothing but the Wigner 9 function, 9i,M of weight J (for 
a definition, see Edmonds (1960)) up to a multiplicative constant. According to Dray 
(1986), the Q;,,,/* give rise to monopole harmonics of monopole strength -m/2. In 
our notation, the local cross section, qm ( Q&/2),  of the complex line bundle L, is the 
very monopole harmonics of strength -m/2. 

Wu and Yang (1976) discussed completely how to piece together locally defined 
monopole harmonics into global ones, i.e. cross sections. Using qm ( Q$,m/2) ,  Greub 
and Petry (1975) obtained the eigenfunctions for a particle moving in the magnetic 
monopole field. In Kuwabara (1982), the same functions, {Qi,M}, are utilised to give 
the eigen cross sections for the Bochner Laplacian Ahm) of the complex line bundle, 
s3 x ,,c + s’, over s’. 

Appendix 

This appendix shows that U‘,.’ acts unitarily on S ( E , )  with respect to the inner product 
( , ) defined by (3). 

First, we show the orthogonality of the basis functions of S ( E , ) ,  { + l } ! , + 1 2 + 1 3 + ~ 4 = , ,  

given by (9) with A = 4 k / ( n + 2 ) .  Let us define a function h,(x) by 

h,(x) = ( A /  T )  1’4(2Jj!)-”2H,(4ix) exp( -Ax2/2) ( A  ’ 0) 

where H, (x)  is the Hermite polynomial (see Erdelyi et a1 1960): 

H , ( x )  = (-  1)’ exp(x’)( dldx)’ exp( -x*). 

Then t,bf E S ( E , )  is written in the form 

9dX) = hll(x1)h,*(x2)h,,(x,)h,~(x,) 
where the bold subscript I is a multi-index denoting ( l I l 2 1 3 l 4 ) .  Let ( , ) denote the 
standard inner product in L2(R) .  Then because of r = X t Z :  x i ,  the inner product of 
$i and t+bj takes the form 

4 n 
(9i, (Lj)  = 4  C [ ( A t l  hj,) . * * (hi<>, , hj,,,) . . . (hi,, h14)I(hr,,, , xihj,, ,)* (AI)  

Here, the caret means that the factor ( A t , , , ,  hj, , ,)  in the square brackets is excluded. Since 
the relation (h , ,  h,) = 6, is easily verified (cf Erdelyi et a1 1953), we have only to 

m = l  
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examine ( h i ,  x2h, )  for the orthogonality of +j with respect to ( , ). A straightforward 
calculation shows that, for i s j ,  

( 2 j +  1 ) / 2 A  i=j 

( h i ,  x2h,)  = [ j ( j -  1 ) ] ” * / 2 A  i + 2  = j ( A 2 )  io otherwise. 

The assumption i s j  does not cause the loss of generality of ( A 2 )  because (h , ,  x‘h,) = 
( x 2 h i ,  h,) holds. When Gi and +j belong to S ( E , ) ,  multi-indices i and j satisfy 

i, + i2 + i ,  + i4 = j ,  + j ,  +j,  + j ,  = n. 

Under this condition, possible choices of i and j are divided into the following: ( a )  
i = j ,  ( b )  i, = j ,  for two m, (c) i, = j ,  for only one m, ( d )  i, #jm for any m. In the 
case of ( a ) ,  the content of the square brackets in ( A l )  always equals unity, while it 
vanishes in the cases of ( b ) ,  (c),  and ( d ) .  From ( A l )  and ( A 2 )  we obtain, in S ( E , ) ,  

( n + 2 I 2  
k 

($i, + j ) = 4 ( n + 2 ) 6 j / A  =- sj 

setting A = 4 k / ( n + 2 )  (see 8 2 ) .  
We are now in a position to show the unitarity of the U‘,.’ action on S(E, ) .  Since 

U‘,.’ can be regarded as a finite-dimensional linear transformation in S ( E , , ) ,  U‘,.’+,. 
can be expressed as 

( U F ) + j ) ( x )  =c A j G i ( x )  (Aj E C ) .  (-44) 
i 

A s  U‘,.’ is a unitary action with respect to the standard inner product in L2(RJ), the 
matrix (A; )  is a unitary matrix: 

Using ( A 3 ) - ( A 5 ) ,  we have, in S ( E , ) ,  

This proves our assertion. 
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